- show subtrees
- развертывание ветвей иерархииTreasury
English-Russian IT glossary. 2014.
English-Russian IT glossary. 2014.
Maximum parsimony — Maximum parsimony, often simply referred to as parsimony, is a non parametric statistical method commonly used in computational phylogenetics for estimating phylogenies. Under maximum parsimony, the preferred phylogenetic tree is the tree that… … Wikipedia
Maximum parsimony (phylogenetics) — Parsimony is a non parametric statistical method commonly used in computational phylogenetics for estimating phylogenies. Under parsimony, the preferred phylogenetic tree is the tree that requires the least evolutionary change to explain some… … Wikipedia
Chordal graph — A cycle (black) with two chords (green). As for this part, the graph is chordal. However, removing one green edge would result in a non chordal graph. Indeed, the other green edge with three black edges would form a cycle of length four with no… … Wikipedia
Tree decomposition — A graph with eight vertices, and a tree decomposition of it onto a tree with six nodes. Each graph edge connects two vertices that are listed together at some tree node, and each graph vertex is listed at the nodes of a contiguous subtree of the… … Wikipedia
Árbol biselado — Un Árbol biselado o Árbol Splay es un Árbol binario de búsqueda auto balanceable, con la propiedad adicional de que a los elementos accedidos recientemente se accederá más rápidamente en accesos posteriores. Realiza operaciones básicas como… … Wikipedia Español
Binary tree — Not to be confused with B tree. A simple binary tree of size 9 and height 3, with a root node whose value is 2. The above tree is unbalanced and not sorted. In computer science, a binary tree is a tree data structure in which each node has at… … Wikipedia
Binary heap — Example of a complete binary max heap Example of a complete binary min heap A binary … Wikipedia
Combinatorial species — In combinatorial mathematics, the theory of combinatorial species is an abstract, systematic method for analysing discrete structures in terms of generating functions. Examples of discrete structures are (finite) graphs, permutations, trees, and… … Wikipedia
Symbolic combinatorics — in mathematics is a technique of analytic combinatorics that uses symbolic representations of combinatorial classes to derive their generating functions. The underlying mathematics, including the Pólya enumeration theorem, are explained on the… … Wikipedia
König's lemma — or König s infinity lemma is a theorem in graph theory due to Dénes Kőnig (1936). It gives a sufficient condition for an infinite graph to have an infinitely long path. The computability aspects of this theorem have been thoroughly investigated… … Wikipedia
Hadwiger conjecture (graph theory) — In graph theory, the Hadwiger conjecture (or Hadwiger s conjecture) states that, if an undirected graph G requires k or more colors in any vertex coloring, then one can find k disjoint connected subgraphs of G such that each subgraph is connected … Wikipedia